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Abstract

The limits of polarization transfer efficiency are explored for systems consisting of three isotropically coupled spins 1/2 in the absence
of relaxation. An idealized free evolution and control Hamiltonian is studied, which provides an upper limit of transfer efficiency (in
terms of transfer amplitude and transfer time) for realistic homonuclear spin systems with arbitrary Heisenberg-type coupling constants
J12, J13, and J23. It is shown that optimal control based pulse sequences have significantly improved transfer efficiencies compared to
conventional transfer schemes. An experimental demonstration of optimal polarization transfer is given for the case of the carbon spin
system of fully 13C labelled alanine at 62.5 MHz Larmor frequency.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Polarization transfer between coupled spins forms the
basis of many two-dimensional experiments [1]. Although
a large number of pulse sequences have been developed
to effect transfer of polarization or coherence, many funda-
mental questions of both theoretical and practical interest
are still open. Here, we address the problem of optimal
transfer efficiency in systems consisting of three isotropical-
ly coupled spins 1/2 in the absence of relaxation. This sce-
nario is relevant for homonuclear spin systems in liquid
state NMR, where the coupling between spins is character-
ized by isotropic (Heisenberg-type) coupling terms [1,2], see
Theory section. Here, we use the term transfer efficiency to
reflect both the transfer amplitude and the required trans-
fer time [2]. Ideally, the transfer amplitude should be as
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large as possible and the transfer time should be as short
as possible, in order to reduce relaxation losses. It is well
known that in systems consisting of two homonuclear
spins 1/2, TOCSY-type (total correlation spectroscopy)
transfer experiments [3–5] are faster and hence more effi-
cient than COSY-type (correlation Spectroscopy) experi-
ments [6]. TOCSY sequences are designed to suppress
offset terms and to create isotropic mixing conditions.
For an isolated pair of spins 1/2, free evolution under the
effective isotropic mixing Hamiltonian results in complete
polarization transfer during a mixing time of 1/(2J12),
where J12 is the coupling constant between the two spins.

For spin systems consisting of three or more coupled
spins, the situation is more complicated. Here, the TOCSY
transfer efficiency strongly depends on the relative size of
the coupling constants [2,5,7–9]. For example, under
isotropic mixing conditions, the transfer efficiency between
two spins with a direct coupling constant J12 is very
inefficient if the coupling constants J13 and J23 to a third
spin have twice the magnitude and the opposite sign of
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the direct coupling, i.e., if J13 � J23 � �2J12 [2,7]. One of
the first approaches to improve the transfer efficiency and
to excert some control over the evolution was based on
selective mixing sequences [2,5,10–23], which (in contrast
to TOCSY) are also known as TACSY (tailored correla-
tion spectroscopy) experiments [2,5]. The polarization
transfer properties of the large number of suggested
TOCSY and TACSY experiments can be conveniently clas-
sified based on the corresponding effective coupling topol-
ogies. It was shown that selective TACSY transfer is always
more efficient than TOCSY transfer, if the magnitude of at
least one of the indirect couplings (|J13| or |J23|) is smaller
than the magnitude of the direct coupling |J12|. If the mag-
nitudes of both indirect couplings to a third spin are signif-
icantly larger than the magnitude of the direct coupling
between the two spins of interest (i.e., |J13/J12| � |J23/
J12| > 2), in most cases a two-step sequential TACSY trans-
fer via the third spin is more efficient. TOCSY transfer is
superior to TACSY and sequential TACSY transfer only
if the indirect couplings are large and have the same sign
as the direct coupling between the spin pair of interest
(J13/J12 �J23/J12 > 2) [2,5]. However, conventional COSY-,
TOCSY-, and TACSY-type sequences are only specific
examples and do not represent the most general type of
polarization transfer experiments.

The goal of this paper is to explore the physical limits of
polarization transfer efficiency and to compare these limits
with the efficiency of conventional experiments. Such theo-
retical limits provide an important benchmark for all pres-
ent and future pulse sequences. On the one hand they show
in which cases these limits are already reached by conven-
tional experiments and hence where all additional efforts to
find further improvements in transfer efficiency would be
futile. On the other hand, they show where conventional
approaches are far from the optimum and where it is worth
to invest in the development of better practical pulse
sequences. Finding the most efficient polarization transfer
sequence is a problem in optimal control [24]. So far, an
analytical characterization of optimal transfer efficiency is
only known for the case of isolated two-spin systems
[25–27]. Here, we use the optimal-control based numerical
optimization algorithm (GRAPE) [28], which has previous-
ly been successfully used for a large number of applica-
tions, including broadband pulses [29–32], pattern pulses
[33], solid-state NMR applications [34–36], logical gates
for quantum information processing [28,37], and relaxa-
tion-optimized coherence transfer [28]. Similar numerical
algorithms have been applied in the study of laser control
of molecular vibrations and reactions [38–44] and for the
design of band-selective pulses in MRI applications
[45–47]. For the case of two coupled spins in the absence
of relaxation, it has been demonstrated that the pulse
sequences found by the GRAPE algorithm closely
approach the analytically derived physical limits
[25,27,28]. Here, we use the GRAPE algorithm to explore
the limits of polarization transfer in isotropically coupled
three-spin systems.
2. Theory

We focus on polarization transfer I1z fi I2z between two
spins that are part of a system consisting of three spins 1/2
in the absence of relaxation. The state of the spin system is
characterized by the density operator q (t), and its equation
of motion is the Liouville–von Neuman equation [1]

_qðtÞ ¼ �i½ðHo þ
XM

k¼1

ukðtÞHkÞ; qðtÞ�; ð1Þ

where Ho is the free evolution Hamiltonian, Hk correspond
to control fields and u1 (t), u2(t), . . . ,uM (t) represent the
control amplitudes that can be varied as a function of time.
In practice, the free evolution Hamiltonian for a system of
three coupled homonuclear spins in isotropic solution is

Hreal
o ¼ Hiso þHoff ð2Þ

with the isotropic coupling term

Hiso ¼
X
m<n

2pJ mnðImxInx þ ImyIny þ ImzInzÞ ð3Þ

and the offset term

Hoff ¼
X3

m¼1

2pmmImz. ð4Þ

The isotropic coupling represented by Hiso is also known as
Heisenberg coupling. Experimentally, in homonuclear spin
systems only two control amplitudes (ux (t) and uy (t)) are
available, which correspond to x or y pulses applied simul-
taneously to all spins

Hreal
control ¼ 2p uxðtÞ

X3

m¼1

Imx þ 2p uyðtÞ
X3

m¼1

Imy . ð5Þ

In the limit of identical offsets (m1 = m2 = m3), no selective
rotations of the individual spins are possible. However, if
the three spins have different offsets, selective rotations
are possible. In order to explore the limits of transfer effi-
ciency, we first focus on the following idealized setting
(which in practice can only be approximated), where we as-
sume that arbitrarily fast, selective pulses can be selectively
applied to the individual spins and where the chemical
shifts of the spins have already been eliminated in a first
averaging process. The corresponding free evolution and
control terms of this idealized Hamiltonian are given by

Hideal
o ¼ Hiso ð6Þ

and

Hideal
control ¼ 2p

X3

m¼1

fumxðtÞImx þ umyðtÞImyg. ð7Þ

Hence, in this idealized setting, the six control amplitudes

u1ðtÞ ¼ u1xðtÞ; u2ðtÞ ¼ u1yðtÞ; u3ðtÞ ¼ u2xðtÞ;
u4ðtÞ ¼ u2yðtÞ; u5ðtÞ ¼ u3xðtÞ; u6ðtÞ ¼ u3yðtÞ

ð8Þ

are assumed to be available.
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Now we consider the problem to find the optimal ampli-
tudes that steer a given initial density operator q (0) = I1z in
a specified time s to a density operator q (s) with maximum
overlap to the target operator I2z. For any given control
sequence, the normalized polarization transfer amplitude
T12 (s) for the transfer I1z fi I2z can be defined as [2,5]

T 12ðsÞ ¼ 1
2
trfI2zqðsÞg. ð9Þ

In the GRAPE optimizations [28] of the pulse sequences
(represented by the control amplitudes uk (t)), the transfer
time s is discretized in finite time intervals Dt and during each
interval the control amplitudes are constant, e.g., during the
jth step the amplitude uk (t) of the kth control Hamiltonian is
given by uk (j). For each transfer time s, the transfer ampli-
tude T12 (s) is maximized using the gradient [28]

dT 12ðsÞ
dukðjÞ

¼ �iDt trfHk ½qj; kj�g; ð10Þ

where k (s) = I2z and the time evolutions of the density
operator q (t) and of the backward propagated target oper-
ator k (t) are governed by the same equation of motion
(Eq. (1)). Starting from random functions uk (t), the control
amplitudes were optimized using a conjugate gradient algo-
rithm based on Eq. (10) [28]. For the coupling constants
J13 = J23 = �2.4 J12, Fig. 1 shows an example of optimized
control amplitudes u1 (t) = u1x(t), . . . ,u6(t) = u3y(t) for a
transfer time s ¼ 0:32 J�1

12 .
Fig. 1. Example of a numerically optimized pulse sequence, consisting of the s
total duration s ¼ 0:32 J�1

12 . The pulse sequence was digitized in 200 time step
We denote the graphical representation of the maximum
achievable transfer amplitude T12 (s) as the TOP (time opti-
mal pulse) curve [27]. An example of a numerically opti-
mized TOP curve is shown in Fig. 2 (solid curve) for the
case J13 = J23 = �2.4 J12.

The minimum time s* for which the maximum transfer
amplitude T12 is achieved is a function of the coupling con-
stants [27]. If J12 „ 0 or if both J13 and J23 are non-zero, the
spin system is fully controllable and the maximum transfer
amplitude is T12 (s*) = 1, corresponding to the unitary
bound [48,49].

As a convenient measure for the efficiency of polariza-
tion transfer between spins I1 and I2 in terms of transfer
amplitude and duration, here we use the standard transfer
efficiency g defined as [2,5]

g ¼ max
s>0

T 12ðsÞ expð�sjJ 12jÞf g: ð11Þ

This transfer efficiency g represents the maximum of the
exponentially damped TOP curve (cf. dashed curve in
Fig. 2), where the damping constant sdamp = |J12|�1 corre-
sponds to (twice) the ideal TOCSY transfer time that
would be found if spins I1 and I2 would form an isolated
pair of coupled spins. (For alternative definitions of trans-
fer efficiency, see [2].) The time for which the damped TOP
curve achieves its maximum is denoted as smax. It can be
conveniently determined numerically and is similar to
(but cannot exceed) s* defined above. Note that g and smax
ix control amplitudes u1x (t), u1y (t), u2x (t), u2y (t), u3x (t), and u3y (t) with a
s of duration Dt ¼ 0:016 J�1

12 .



Fig. 2. Example of a TOP (time-optimal pulse) curve for the case
J13 = J23 = �2.4J12, representing numerically optimized transfer ampli-
tudes T12 as a function of transfer time s. The optimum transfer efficiency
gOC (dotted line) is defined as the maximum of the exponentially damped
TOP curve (dashed curve, cf. Eq. (11)).
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depend only on the relative coupling constants J13/J12 and
J23/J12 [2]. Hence for a general three-spin system, both
g (J13/J12, J23/J12) and smax (J13/J12, J23/J12) can be repre-
sented by two-dimensional contour plots.

3. Transfer efficiency maps

For �5.2 6 J13/J12 6 5.2 and �5.2 6 J23/J12 6 5.2, we
calculated 53 · 53 = 2809 TOP curves using the optimal
control based GRAPE algorithm [28]. For each TOP
curve, the resulting transfer efficiency g (cf. Eq. (11) and
Fig. 2) was determined and the resulting optimal control
based gOC map is shown in Fig. 3A. For comparison, the
transfer efficiency map gTOCSY of isotropic mixing [3,5,7]
is shown in Fig. 3B. Fig. 3C shows the (constant) transfer
efficiency gTACSY = 0.622 of a (IOO-type) TACSY experi-
ment [2,5], where the couplings to spin I3 are effectively
eliminated, resulting in the isotropic mixing transfer
dynamics of an isolated two-spin system. Fig. 3D shows
the best transfer efficiency gtwo-step achievable by a two-step
sequential TACSY transfer consisting of a selective (OIO-
type TACSY) isotropic mixing transfer between spins I1

and I3 (while decoupling spin I2) followed by a selective
(OOI-type TACSY) isotropic mixing transfer between
spins I3 and I2 (while decoupling spin I1) [2,5]. Cross
sections along the lines J13 = J23 and J13 = �J23 of these
efficiency maps are shown in Fig. 4. As expected, for all
combinations of coupling constants, gOC was found to be
at least as large as gTOCSY, gTACSY, and gtwo-step. In the case
of isotropic mixing, the transfer efficiency gTOCSY reaches
gOC only in the special case where J13 = J23 = 0 and also
closely approaches gOC for J13 = J23 � 4J12. However, for
most combinations of coupling constants, gTOCSY is signif-
icantly smaller than gOC. If the magnitude of at least one of
the indirect couplings (|J13| or |J23|) is on the order of or
smaller than |J12|, we find gOC = gTACSY. Hence, for small
indirect couplings, the single-step TACSY transfer turns
out to be the optimal transfer strategy. On the other hand,
in the limit where both indirect couplings are significantly
larger than the direct coupling, the two-step TACSY trans-
fer approaches the optimum transfer efficiency.

The symmetry properties of the conventional sequences
have been previously discussed in detail [2,5]. The only
symmetry element found in the gOC map is a trivial reflec-
tion symmetry around the diagonal (J13 = J23). This is a
direct result of the fact that for any pulse sequence with
a transfer amplitude T12 (t) from I1z to I2z, the time-re-
versed pulse sequence will provides the same transfer
amplitude from I2z to I1z, i.e., T21 (t) = T12 (t).

The optimal transfer time smax for the damped TOP
curve is shown in Fig. 5 as a function of J13/J12 and
J23/J12. If the magnitude of one of the indirect coupling
constants is smaller than the magnitude of the direct
coupling, the transfer time is identical to the transfer time
of the TACSY experiment. However, if the magnitudes
of both indirect coupling constants are larger than |J12|,
the optimal transfer time is markedly reduced.

4. Experimental

The presented theoretical limits of polarization transfer
are relevant for many applications of practical interest. For
example in biological applications, homonuclear spin sys-
tems consisting of three coupled 1H spins occur in proteins
and nucleic acids. For such practical applications, the ide-
alized model considered here can provide only upper
bounds for the largest achievable transfer efficiency
because additional constraints have to be take into
account. (I) The fidelity and duration of spin-selective puls-
es depends on the size of chemical shift difference in a given
spin system. For small or vanishing chemical shift differ-
ences (e.g., between geminal protons), spin-selective con-
trol is very limited or even impossible. (II) In most
practical applications, pulse sequences are required that
work not only for a given spin system with known chemical
shifts but that cover finite chemical shift ranges typically
found in specific applications. (III) In many applications,
typical ranges of coupling constants need to be taken into
account. (IV) The sequences should be robust with respect
to typical variations of rf amplitudes due to imperfect pulse
calibration and rf inhomogeneity. (V) Optimal pulse
sequence performance requires high standards for spec-
trometer hardware with respect to pulse switching time, lin-
ear amplifiers and constant rf power during long
irradiation periods. (VI) Based on results for heteronuclear



Fig. 3. In a system consisting of three isotropically coupled spins 1/2, the numerically optimized transfer efficiencies (A) gOC, (B) gTOCSY, (C) gTACSY, and
(D) gtwo-step are shown for polarization transfer I1z fi I2z.
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spin systems [52–55], it is expected that experiments opti-
mized for the specific relaxation properties of a given sam-
ple may have the best sensitivity. (VII) In many
experimental settings, spin systems consisting of more than
three coupled spins are relevant.

Consideration of all these issues is beyond the scope of
this paper and require further studies to yield pulse
sequences for practical applications. In this section, we
demonstrate how some of these problems (I, II, IV, and
V) can be addressed and present an experimental example
illustrating on the one hand the relation between ideal
and practical pulse sequences and on the other hand signif-
icant gains compared to conventional approaches.

For an experimental demonstration of optimal control
based polarization-transfer sequences, we chose fully 13C
labelled alanine as a model compound. At low field
(62.5 MHz 13C Larmor frequency) the offset differences of
the Cb, C 0, and Ca resonances are large enough (on the
order of kHz) to allow for fast spin-selective rotations.
On the other hand, effective isotropic mixing conditions
can be approximated because the offset frequencies are
smaller than the available rf amplitude. Alanine was dis-
solved in D2O and the experiments were performed at a
temperature of 27 �C using a Bruker AC 250 spectrometer
with modern SGU units for rf control. The 1H spins were
decoupled and the nuclear spins of Cb, C 0, and Ca corre-
spond to I1, I2, and I3, respectively. In this isotropically
coupled three-spin system, the experimentally determined
coupling constants are J12 = �1.6 Hz, J13 = 33.7 Hz, and
J23 = 59.6 Hz. For this combination of coupling constants,
the numerically determined ideal TOP curve for polariza-
tion transfer from spin I1 (Cb) to I2 (C 0) is shown in
Fig. 6A (solid curve), assuming six independent and unlim-
ited control amplitudes, cf. Eqs. 7 and 8, which were digi-
tized in steps of 30 ls. The minimum time to achieve full
polarization transfer is s* � 18.9 ms. This is about 20%
shorter than the total transfer time of an ideal sequential
two-step TACSY sequence, which requires a minimum
transfer time of 1/(2J13) + 1/(2J23) = 23.2 ms for complete
transfer [2].

In our experiments, the 13C transmitter frequency was
set in the center between the Cb and C 0 resonance frequen-
cies, resulting in offsets m1 = �4941.7 Hz, m2 = 4941.7 Hz,
and m3 = �2837.7 Hz. For these offset frequencies, we also



Fig. 4. Cross sections of the transfer efficiency maps shown in Fig. 3 for
(A) J13 = J23, (B) J13 = �J23.

Fig. 5. The optimal transfer time smax for the damped TOP curves is
shown in units of J�1

12 as a function of J13/J12 and J23/J12.
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calculated the more realistic TOP curve (dashed curve in
Fig. 6A), assuming only the two non-selective and unlimit-
ed control amplitudes ux and uy, cf. Eq. (5). Here the min-
imum time to achieve full polarization transfer is
s* � 20.7 ms. Due to the relatively large offset differences
in the alanine spin system, the TOP curve based on non-se-
lective pulses closely approaches the ideal TOP curve.

In practice, rf amplitudes are not unlimited and pulse
sequences should be robust with respect to rf inhomogene-
ity and variations of chemical shifts [28]. We therefore also
optimized five purely phase-modulated pulse sequences
(with durations s of 19.9, 26.7, 28.4, 39.8, and 56.8 ms) with

a constant rf amplitude
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2

x þ u2
y

q
of 10.125 kHz for offset

ranges m1 = �4941.7 ± 170 Hz, m2 = 4941.7 ± 170 Hz, and
m3 = �2837.7 ± 170 Hz and a Gaussian rf amplitude distri-
bution with a full width at half height of 10%. The resulting
pulse shapes are available for download in Bruker format
on the website www.org.chemie.tu-muenchen.de/glaser.
For example, the phase modulation u (t) of the optimized
sequence with a duration of 19.9 ms is shown in Fig. 7A.
In Fig. 6A, the resulting transfer amplitudes (averaged over
all combinations of offsets and rf amplitudes for which
polarization transfer was optimized) are represented by sol-
id circles. The maximum transfer amplitude of 0.97 is
reached for a mixing time of about 26.7 ms. As expected,
the ideal TOP curve for six selective control fields (solid
curve) forms an upper bound for the more realistic TOP
curve for two non-selective control fields, which in turn
forms an upper bound for the transfer amplitudes of the
robust practical sequences (solid circles).

Experimental polarization transfer amplitudes were
measured using standard procedures [5]. The initial density
operator q (0) = I1z was prepared by complete saturation of
the 13C spins followed by selective heteronuclear Hart-
mann–Hahn transfer from Hb to Cb [50,51] and a 90��y

pulse that flips I1x to I1z. After applying a polarization
transfer sequence of duration s to q (0), the resulting polar-
ization I2z (C 0) is rotated to I2x by a 90�y pulse and a spec-
trum is recorded. Sections of experimental spectra showing
the C 0 signal for the optimized pulse sequences are shown
in Fig. 6B (solid curves). The normalized experimental
transfer amplitude T12 is given by the integrated signal
intensity of spin I2 divided by the integrated signal intensity
of spin I1 which results if a 90�y pulse is applied directly to
q (0) = I1z. In Fig. 6A, the experimental polarization trans-
fer amplitudes between spins I1 (Cb) and I2 (C 0) resulting
from the optimized practical pulse sequences are represent-
ed by open circles. A reasonable match is found between
experimental (open circles) and simulated (solid circles)
polarization transfer amplitudes. The remaining discrepan-
cies can be attributed to experimental imperfections and
relaxation effects which were not taken into account in
the present simulations.

For comparison, Fig. 6A also shows simulated (solid
squares) and experimental (open squares) transfer ampli-
tudes for the alanine spin system under the TOCSY

http://www.org.chemie.tu-muenchen.de/glaser


Fig. 6. (A) Simulated (solid symbols and smooth curves) and experimental
(open symbols) polarization transfer amplitudes T12 as a function of the
transfer time s for the homonuclear 13C spin system of fully 13C labelled
alanine. Spins I1, I2, and I3 correspond to Cb, C 0, and Ca, respectively.
Solid curve: ideal TOP curve for six spin-selective and unlimited control
amplitudes, cf. Eqs. (7) and (8). Dashed curve: more realistic TOP curve
based on two non-selective and unlimited control amplitudes ux and uy, cf.
Eq. (5). Solid and open circles: theoretical and experimental transfer
amplitudes for optimal control based, purely phase-modulated pulse
sequences with a constant rf amplitude of 10.125 kHz optimized for offset
variations of ±170 Hz and rf inhomogeneity. Solid and open squares:
simulated and experimental TOCSY transfer amplitudes for DIPSI-2 with
a constant rf amplitude of 10.125 kHz. The simulated TOCSY transfer
amplitudes (solid squares) are connected by a smooth curve (dash-dotted
curve) to guide the eye. (B) Sections of experimental spectra showing the
C 0 signal of alanine after polarization transfer from the Cb. The duration s
of the transfer sequence is given in multiples of the DIPSI-2 cycle time
sc = 2.84 ms. Dashed spectra correspond to DIPSI-2 transfer and solid
spectra correspond to optimal control based practical polarization transfer
sequences.
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sequence DIPSI-2 [56] with the same rf amplitude of
10.125 kHz as used for the optimal control based sequenc-
es. In Fig. 6B the C 0 signal (dashed curves) is shown as a
function of the mixing time. For this rf amplitude, the cycle
time of DIPSI-2 is 2.84 ms and the periodic phase modula-
tion of seven DIPSI-2 cycles corresponding to a total mix-
ing time of 19.9 ms is shown in Fig. 7B. In order to guide
the eye, in Fig. 6A the simulated transfer amplitudes (solid
squares) for integer multiples of the cycle time were
connected by a smooth curve using a qubic spline fit
(dash-dotted curve). Again, a reasonable match is found
between simulated and experimental DIPSI-2 transfer
functions T12 (s), which show two pronounced maxima at
s = 19.9 ms and s = 39.8 ms. For these two maxima, the
simulated (and experimental) transfer amplitudes are 0.61
(0.62) and 0.66 (0.64). In comparison, the corresponding
simulated (and experimental) transfer amplitudes of the
optimized practical pulse sequence with durations
s = 19.9 ms and s = 39.8 ms are 0.82 (0.80) and 0.97
(0.89), respectively. Hence, in the simulations (experiments)
at s = 19.9 ms a gain of 34% (29%) is found and at
s = 39.8 ms a gain of 47% (39%).

5. Discussion

The tools of optimal control make it possible to
explore the limits of polarization transfer in non-trivial
spin systems. Although the GRAPE algorithm is not
guaranteed to converge to a globally optimal pulse
shape, experience with cases where analytical solutions
are known [28] suggests that the presented efficiency
maps not only provide the currently best known transfer
efficiencies but also closely approach the theoretical lim-
its. On the one hand, the presented results provide a
benchmark for all known or future pulse sequences.
On the other hand, they motivate the search for a
detailed analytical characterization of the optimal trans-
fer strategy. The presented results for polarization trans-
fer I1z fi I2z also apply to transfer of in-phase coherence
I1x fi I2x or I1y fi I2y because, e.g., I1x can be flipped to
I1z by a hard pulse which takes a negligible amount of
time. For cases where the optimal efficiency is larger
than the single-step TACSY transfer, a different optimal
pulse sequence corresponds to each combination of rel-
ative coupling constants J13/J12 and J23/J12. This also
motivates the search for optimal pulse sequences for
ranges of relative coupling constants and chemical shift
ranges that are characteristic for specific applications.
For example, homonuclear spin systems in proteins
and nucleic acids are candidates for more efficient polar-
ization-transfer experiments to establish chemical shift
correlations and to quantify couplings. For such appli-
cations, the presented transfer efficiencies form an upper
limit for practical pulse sequences which must rely on
chemical shift differences to effect selective rotations of
individual spins. This was demonstrated theoretically
and experimentally for the 13C spin system of fully
13C labelled alanine, where we also designed pulse
sequences that are robust with respect to realistic rf
inhomogeneities and variations of chemical shifts. Signif-
icant gains in polarization transfer amplitude were
found compared to conventional TOCSY experiments,
opening new avenues for efficient tailor-made homonu-
clear polarization transfer experiments. A characteristic
of optimal control-based pulse sequences is that they
do not consist of a basic pulse sequence which is repeat-
ed throughout the entire mixing time as in conventional
TOCSY experiments, cf. Figs. 7A and B [3–5]. Instead,



Fig. 7. (A) Non-periodic phase modulation u (t) of a pulse sequence with a constant rf amplitude of 10.125 kHz and duration s = 19.9 ms optimized for rf
inhomogeneity and offset variations of ±170 Hz around the offsets of 13C spins of alanine at a 13C transmitter frequency of 62.5 MHz. (B) Periodic phase
modulation of a conventional DIPSI-2 mixing sequence also with a constant rf amplitude of 10.125 kHz and a total mixing time of 19.9 ms. Each of the
seven DIPSI-2 cycles (separated by vertical dotted lines) has a duration of 2.84 ms.
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at each point in time the optimum pulse is applied to
steer the spin system to the desired target state. In this
study, we did not take specific relaxation mechanisms
into account, to explore the limits of homonuclear
time-optimal polarization transfer in the most general
setting. However, similar to the case of heteronuclear
experiments [52–55], it is expected that the development
of homonuclear relaxation-optimized transfer schemes
will lead to further improved pulse sequences.

Acknowledgments

J.L.N. acknowledges a DAAD-CAPES scholarship.
S.J.G. thanks the Deutsche Forschungsgemeinschaft for
Grants Gl 203/4-2. N.K. acknowledges support by Grants
ONR 38A-1077404, AFOSR F9550-05-1-0443, and
AFOSR FA9550-04-1-0427.

References

[1] R.R. Ernst, G. Bodenhausen, A. Wokaun, Principles of Nuclear
Magnetic Resonance in One and Two Dimensions, Clarendon Press,
Oxford, 1987.

[2] S.J. Glaser, Coupling topology dependence of polarization-transfer
efficiency in TOCSY and TACSY experiments, J. Magn. Reson. A
104 (1993) 283–301.

[3] L. Braunschweiler, R.R. Ernst, Coherence transfer by isotropic
mixing: Application to proton correlation spectroscopy, J. Magn.
Reson. 53 (1983) 521.

[4] A. Bax, D.G. Davis, MLEV-17-based two-dimensional homonuclear
magnetization transfer spectroscopy, J. Magn. Reson. 65 (1985) 355.

[5] S.J. Glaser, J.J. Quant, Homonuclear and heteronuclear Hartmann–
Hahn transfer in isotropic liquids, in: W.S. Warren (Ed.), Advances
in Magnetic and Optical Resonance, vol. 19, Academic Press, San
Diego, 1996, pp. 59–252.

[6] W.P. Aue, E. Bartholdi, R.R. Ernst, Two-dimensional spectroscopy.
Application to nuclear magnetic resonance, J. Chem. Phys. 64 (1999)
2229–2246.
[7] O. Schedletzky, S.J. Glaser, Analytical coherence-transfer functions
for the general AMX spin system under isotropic mixing, J. Magn.
Reson. A 123 (1996) 174–180.

[8] B. Luy, O. Schedletzky, S.J. Glaser, Analytical polarization transfer
functions for four coupled spins 1/2 under isotropic mixing condi-
tions, J. Magn. Reson. 138 (1999) 19–27.

[9] S.C. Sahu, Analysis and prediction of isotropic mixing magnetization
transfer profiles in three-spin topologies, J. Magn. Reson. 147 (2000)
121–128.

[10] A. Bax, D.G. Davies, Homonuclear Hartmann–Hahn magnetiza-
tion transfer: new one- and two-dimensional NMR methods for
structure determination and spectral assignment, in: N. Nicolai,
G. Valensin (Eds.), Advanced Magnetic Resonance Techniques
in Systems of High Molecular Complexity, Birkhüser, Boston,
1986.

[11] S.J. Glaser, G. Drobny, The tailored TOCSY experiment: chemical
shift selective coherence transfer, Chem. Phys. Lett. 164 (1989)
456–462.

[12] S.J. Glaser, G.P. Drobny, Controlled coherence transfer by a
multiple-step tailored TOCSY experiment, Chem. Phys. Lett. 184
(1991) 553–559.

[13] A. Mohebbi, A.J. Shaka, Selective homonuclear cross polarization,
J. Magn. Reson. 94 (1991) 204–208.

[14] R. Konrat, I. Burghardt, G. Bodenhausen, Coherence transfer in
nuclear magnetic resonance by selective homonuclear Hartmann–
Hahn correlation spectroscopy, J. Am. Chem. Soc. 113 (1991)
9135–9140.
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